doi:10.3969/j.issn.1671-5152.2012.11.005

# 小型汽油机改装用于CCHP的实验研究

□ 同济大学机械与能源工程学院(201804)周宇 秦朝葵 童超 马飞

摘 要: 以小型汽油机改装为天然气原动机,配置热水型溴化锂吸收式制冷机及发电机,搭建了一套小型 的CCHP系统。对余热回收能力、发电品质及发动机稳定性、溴冷机热力特性进行了实验研究和 分析。根据溴冷机温度的变化情况,将其启动至达到名义工况之间的过程分为3个阶段,并进行 了运行参数分析。此外,提出几点建议以提高发电品质。

关 键 词: CCHP 汽油机改装 溴冷机 发电品质

## Experimental Research of CCHP System Based Upon Retrofitted Petroleum Engine

Mechanical and energy school of Tongji University Zhou Yu, Qin Chaokui, Tong Chao, Ma Fei

Abstract: A small-size petroleum engine was retrofitted to fuel natural gas and LiBr absorption chiller, electricity generator were integrated to set up a small CCHP system. Recoverable amount of waste-heat, performance of absorption chiller, quality of electricity generated were experimentally researched and analyzed. Three stages were divided between start-up and stable operation for absorption chiller. Some measures were discussed to improve electricity quality.

**Keywords:** CCHP (Combined cooling heating and power) Engine retrofitting LiBr absorption chiller Electricity quality

#### 前言 1

表1和表2列出了按一次能源种类划分的2010年中 国与世界消耗量和结构占比情况。显然, 煤炭仍是我 国的主导能源印,占70.45%。以煤为主的能源结构造 成严重的环境污染。作为一种清洁且储运方便的矿物 燃料,天然气具有很高的经济性。自"西气东输"开 始,我国天然气工业已进入快速发展初期。目前我国 大规模的天然气利用还处于起步阶段, 技术空白多, 与发达国家相比差距比较大。安全、经济性和设备国 产化是当前需要解决的关键问题[2]。

#### 表1 按能源种类划分的消耗量对比(亿吨石油)

|      | 石油      | 天然气     | 煤炭      | 核能    | 水电    | 可再生   | 总计       |
|------|---------|---------|---------|-------|-------|-------|----------|
| 中国   | 428.6   | 98.1    | 1 713.5 | 16.7  | 163.1 | 12.1  | 2 432.1  |
| 世界平均 | 4 028.1 | 2 858.1 | 3 555.8 | 626.2 | 775.6 | 158.6 | 12 002.4 |

表2 按能源种类划分的结构对比(%)

|      | 石油    | 天然气   | 煤炭    | 核能   | 水电   | 可再生  | 总计  |
|------|-------|-------|-------|------|------|------|-----|
| 中国   | 17.62 | 4.03  | 70.45 | 0.69 | 6.71 | 0.50 | 100 |
| 世界平均 | 33.56 | 23.81 | 29.63 | 5.22 | 6.46 | 1.32 | 100 |

发展和推广冷热电三联供(Combined Cooling Heating and Power, 下简称CCHP) 系统是解决我国能 源结构不合理, 电网分布不均衡和改善环境的一个有 效途径。CCHP技术通过能量的梯级利用,可显著提 高能源利用率[3]。根据国际能源署(IEA)的最新报 告,全球CCHP总装机容量已达到了330GW。文献[4-7] 介绍了CCHP在国内外的发展状况,美国、日本、丹 麦、荷兰等地发展迅速, 丹麦CCHP项目在电力系统 总装机中的比重已经超过60%,荷兰的装机容量占总 装机的40%。我国在燃气CCHP系统的工程应用方面 起步较晚,近年来得到了更多的关注和重视。2010年 我国制订了发展1 000个不同CCHP应用技术示范工程 加快其应用转化的方案。

本文通过将小型汽油机改装成天然气发动机,并 选配小型溴化锂吸收式制冷机,初步开发了一套基于 国产化设备的CCHP系统、较之进口设备具有很大的 经济优势[8],而且启动快、运行灵活、调节方便。其 具体流程如图1所示。本文对实验测试的机组性能进 行分别讨论,包括发动机改装、余热回收情况、小型 溴冷机的制冷性能等。

#### 发动机改装

小功率天然气发动机大多由汽油机改装而成,大 功率发动机多由柴油机加装点火装置。改装天然气发 动机的基本原则是保持基本结构不变,如曲柄连杆机 构、配气机构、机体、缸盖、冷却系统、润滑系统及 发动机主要配件等,通过合理设计和选择改制的零部 件, 达到高性能、低成本的改制目的。与传统汽油机 相比,其具有排放低、燃料经济性好、运转柔和及噪 音小等特点。本实验选用JL465Q1型汽油机,参数如 表3所示。

表3 JL465Q1汽油机主要参数

| 缸径×<br>行程<br>mm  | 总<br>排量<br>L | 压缩<br>比 | 最低空<br>载转速<br>r/min | 标定<br>转速<br>r/min | 标定<br>功率<br>kw | 最大扭<br>矩转速<br>r/min | 最大<br>扭矩<br>N·m |
|------------------|--------------|---------|---------------------|-------------------|----------------|---------------------|-----------------|
| $65.5 \times 72$ | 0.97         | 8.8:1   | $900 \pm 50$        | 5 300             | 31.5           | 3 000 ~ 5 000       | 69              |

汽油机改装为天然气发动机时, 首要问题是进气 混合装置的改装。其中最关键的技术是燃料供给系统 的改装,即将供油系统改装为供气系统。改装的供气 系统主要有两种,一种是直喷混合方式,另一种是进 气道混合器预混合方式。本实验采用后者, 充分考虑 系统在建筑中的可应用性,利用混合器(将减压器输 出的常压燃气和空气混合形成可燃混合气的装置)前 后的压差控制燃气的进气量及空气的混合比例,再由 进气总管吸入气缸。混合器下游设置节气门, 根据工 况要求调节其开度、实现对混合气量的控制,同时保 证发电电压和频率的稳定。供气系统如图2所示。

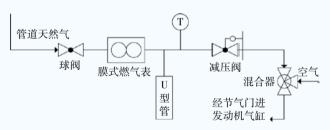



图2 天然气供气系统简图

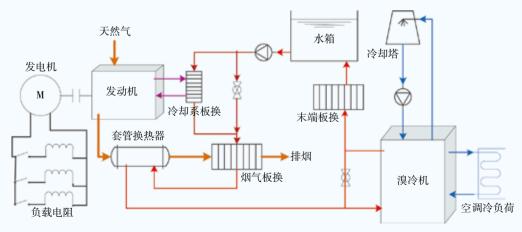



图1 天然气发动机CCHP系统设计图

根据发动机运行时的空气流量需求来选择合适的 混合器非常重要;若混合器选择过小,会影响发动机 功率输出;混合器过大则会使发动机启动困难、不能 维持怠速状态甚至无法正常启动, 且空燃比也会不正 确。本试验选用IMPCO Model 60型比例式混合器。

#### 发电机侧及余热回收系统

CCHP实验系统由发电机和改装的天然气发动机连 接构成, 根据发动机的额定功率并考虑发电机的效率损 失,选用一台额定功率18kW的无刷励磁AVR发电机, 采用双支点、双轴承安装。发电时工频和中频电压互 不干扰, 电压波形下弦性好, 供电品质优良。此外, 实验中使用负载电阻模拟用电负荷, 每组负载的电阻 值为57.6Ω左右。根据发电机功率、采用12根负载电阻 并联的方式与发电机连接, 在低功率段(0kW~6kW) 每两组负载电阻用独立的开关进行控制, 高功率段 (6kW~10kW)每一组负载电阻用独立的开关进行控制 以调节发电机输出功率。

发动机的余热回收系统包括两部分,一部分回收 发动机缸体冷却系产生的热量,另一部分回收发动机 尾气热量。前者采用板式热交换器, 在满足压力降条 件下,可达到要求的换热效果。为保证较高的余热回 收效率和较紧凑的结构,采用钎焊板式换热器,结构 紧凑、传热系数较高。发动机尾气余热则采用两级热 回收,对应常规天然气的含硫量,尾气温度可以降到 120℃~150℃[8]。为深度回收余热,在气缸出口设置 套管式换热器(一级热回收)和板式换热器(二级热 回收)。冷却系侧换热器与烟气侧换热器之间的连接 方式也是需要考虑的因素。为使整个余热回收系统的 效率达到最优,本实验中采用旁通连接(如图3), 既增加了烟气侧换热器的回收热量,又可有效降低冷 却液的温度水平,保证余热回收系统的安全性。

#### 溴化锂制冷机组

综合考虑试验设施、余热回收效率及安全方面的 因素,确定热水温度在80℃~90℃为佳,最终选用的 溴冷机技术参数见表4。

溴冷机吸收器内灌注制的冷剂为50%的溴化钾溶 液50L, 密度1.52kg/L(30℃), 比热容2.1kJ/(kg·K)<sup>[3]</sup>。

| 热水   |        | 冷冻   | 水    | 冷却z  | 制冷量  |        |
|------|--------|------|------|------|------|--------|
| 进水温度 | 90℃    | 出水温度 | 10℃  | 进水温度 | 30℃  |        |
| 出水温度 | 85℃    | 回水温度 | 15℃  | 近小値及 | 30 G | 11.5kW |
| 流量   | 3.1t/h | 流量   | 2t/h | 流量   | 5t/h |        |

表4 溴冷机名义工况下主要技术参数

### 实验结果及分析

#### 5.1 实验条件

根据发电机转速要求,设定发动机转速3000r/min; 天然气压力2000Pa;根据溴冷机要求,控制给水流量 在3.1t/h。实验时的天然气气相色谱分析结果见表5, 低热值为34.9MJ/Nm<sup>3</sup>。

异丁烷 正丁烷 氧气 甲烷 乙烷 丙烷 氮气 二氧化碳 93.73 4.01 0.47 0.07 0.08 0.04 1.17 0.43

表5 天然气成分

| 冷却液进口 6 冷却液出口            | 排烟            |               |
|--------------------------|---------------|---------------|
| 给水<br>板式换热器<br>2<br>旁通阀1 | 套管式换热器 3 旁通阀2 | 供热水或蒸汽板式换热器 4 |

图3 余热回收流程图(1~8为温度测点)

#### 5.2 余热回收情况

实验测试了发电机带动负载数分别为1-12组时的余 热回收情况, 见表6。其中发电功率最大为10.15kW, 维 持发动机转速在3000±50r的范围内,并保持稳定。

可见:烟气温度从500℃以上降到110℃左右,余 热回收系统基本达到了设计要求,同时也避免了烟气中 水蒸气的冷凝,烟气套管出口处的水温90℃±0.5℃,

可满足热水型溴化锂吸收式制冷机组工作需求。

通过测试天然气流量、烟气中氧含量, 计算得 到对应负载个数下的发电量、热回收效率,如表7所 示。显然,随着负载个数的增加,输入总能量增加, 余热回收量和发电功率也增加,发电效率也呈递增的 趋势,在12组负载时,发电效率达25%;余热回收效 率则呈减少趋势,总效率基本上维持在80%左右,在

表6 高负载0~12组时余热回收系统温度及流量数据

| 负载 | 热水回路测点温度(℃) |      |      |      | 流量   | 烟气  | 【测点温度( | C)  | 天然气   | ~    |
|----|-------------|------|------|------|------|-----|--------|-----|-------|------|
| 个数 | 进冷系         | 出冷系  | 出烟板  | 出套管  | t/h  | 出气缸 | 中间     | 排烟  | Nm³/h | α    |
| 0  | 85.4        | 87.3 | 88.0 | 89.4 | 3.11 | 567 | 247    | 112 | 1.80  | 1.06 |
| 1  | 85.2        | 87.3 | 88.1 | 89.5 | 3.10 | 571 | 259    | 113 | 2.13  | 1.06 |
| 2  | 84.9        | 87.0 | 87.9 | 89.4 | 3.11 | 578 | 274    | 114 | 2.32  | 1.07 |
| 3  | 85.0        | 87.2 | 88.1 | 89.7 | 3.11 | 578 | 278    | 112 | 2.51  | 1.08 |
| 4  | 85.0        | 87.2 | 88.3 | 89.9 | 3.12 | 578 | 291    | 112 | 2.73  | 1.10 |
| 5  | 84.9        | 87.3 | 88.4 | 90.1 | 3.11 | 576 | 298    | 111 | 2.89  | 1.12 |
| 6  | 84.2        | 86.6 | 87.8 | 89.6 | 3.11 | 571 | 303    | 111 | 3.09  | 1.15 |
| 7  | 84.5        | 86.9 | 88.2 | 90.1 | 3.08 | 560 | 305    | 108 | 3.31  | 1.20 |
| 8  | 84.3        | 86.7 | 88.1 | 90.1 | 3.11 | 557 | 318    | 111 | 3.45  | 1.28 |
| 9  | 84.2        | 86.5 | 88.1 | 90.1 | 3.11 | 548 | 327    | 109 | 3.62  | 1.37 |
| 10 | 83.9        | 86.2 | 87.9 | 90.0 | 3.12 | 539 | 336    | 111 | 3.84  | 1.48 |
| 11 | 84.0        | 86.3 | 88.1 | 90.3 | 3.11 | 529 | 345    | 114 | 4.08  | 1.51 |
| 12 | 84.3        | 86.7 | 88.5 | 90.8 | 3.11 | 521 | 348    | 115 | 4.23  | -    |

表7 实验数据汇总

| 负载数 | 燃气流量<br>Nm/h | 烟气中氧含量% | 过剩空气<br>系数 | 总输入能量<br>kW | 发电功率<br>kW | 余热回收量<br>kW | 发电效率<br>% | 热回收效率<br>% | 总效率<br>% |
|-----|--------------|---------|------------|-------------|------------|-------------|-----------|------------|----------|
| 1   | 2.15         | 1.4     | 1.06       | 20.84       | 0.86       | 15.35       | 4.15      | 73.65      | 77.79    |
| 2   | 2.34         | 1.6     | 1.07       | 22.69       | 1.73       | 16.33       | 7.62      | 71.99      | 79.6     |
| 3   | 2.54         | 1.8     | 1.08       | 24.62       | 2.59       | 17.02       | 10.53     | 69.12      | 79.65    |
| 4   | 2.76         | 2.06    | 1.10       | 26.76       | 3.46       | 18.11       | 12.92     | 67.68      | 80.6     |
| 5   | 2.92         | 2.52    | 1.12       | 28.31       | 4.32       | 18.79       | 15.26     | 66.38      | 81.64    |
| 6   | 3.12         | 2.97    | 1.15       | 30.25       | 5.18       | 19.56       | 17.14     | 64.67      | 81.81    |
| 7   | 3.35         | 3.9     | 1.20       | 32.48       | 6.05       | 20.06       | 18.62     | 61.77      | 80.39    |
| 8   | 3.49         | 5.02    | 1.28       | 33.83       | 6.91       | 20.83       | 20.43     | 61.57      | 82       |
| 9   | 3.66         | 6.15    | 1.37       | 35.48       | 7.78       | 21.3        | 21.92     | 60.03      | 81.95    |
| 10  | 3.88         | 7.27    | 1.48       | 37.61       | 8.64       | 22.06       | 22.97     | 58.65      | 81.62    |
| 11  | 4.12         | 7.57    | 1.51       | 39.94       | 9.5        | 22.89       | 23.8      | 57.31      | 81.1     |
| 12  | 4.27         | 8.24    | 1.54       | 41.4        | 10.37      | 23.37       | 25.05     | 56.46      | 81.5     |

8组负载时,总效率达到最大82%。

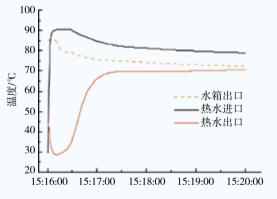
#### 5.3 溴冷机热力分析

受试验环境的制约, 溴冷机未进行长时间的稳定 运行测试, 而着重于测试溴冷机启动时的非稳定过程 对整个CCHP系统平衡的影响。根据溴冷机各测点温 度的变化情况,将其开机启动直至冷媒水出口温度达 到名义工况之间的过程分为3个阶段,依次为启动阶 段、预热阶段和准平衡阶段。实验测试环境见表8:

表8 溴冷机测试环境参数

| 燃气<br>耗量 | 输入 功率 | 发电<br>电压                              | 发电<br>功率  | 济    | 环境<br>温度 |      |      |
|----------|-------|---------------------------------------|-----------|------|----------|------|------|
| Nm³/h    | kW    | ····································· | リング<br>kW | 热水   | 冷却水      | 冷媒水  | °C   |
| 3.138    | 30.33 | 221.5                                 | 5.98      | 3.13 | 6.05     | 1.99 | 30.3 |

#### 5.3.1 溴冷机启动阶段


当余热回收系统出口温度,即烟气板换出口水 温达到90℃时,切换三通阀,热水通入溴冷机的发生

器。因溴冷机内部溴化锂溶液的初始温度低,需吸热 一部分热源热量提高其溶液温度,才能正常运行制冷 工况。所以在切换三通阀后,余热回收热水的温度在 一段时间内下降,同时溴化钾溶液温度不断升高,这 段过程称之为"启动阶段"。热水温度的实测变化情 况见图4。

因溴冷机内的溴化锂溶液的升温, 启动阶段对 整个CCHP系统的温度水平有较大的影响,耗热量在 前期急剧增加,超过了系统的余热回收量,热水温度 迅速下降, 在测试过程中降幅接近10℃。这些设计之 外的耗热量使系统的温度水平降低,并影响了溴冷机 的运行效率。

#### 5.3.2 溴冷机预热阶段

当溴冷机耗热量降低至余热回收量以下, 直至 冷媒水进口温度降低到溴冷机名义工况15℃的这段时 间,称其为溴冷机的预热阶段。在此阶段,溴冷机各 个部件内部的传热、传质过程趋于稳定,温度、压力 逐渐达到正常工作时的水平,如图5所示。



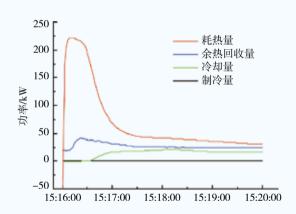
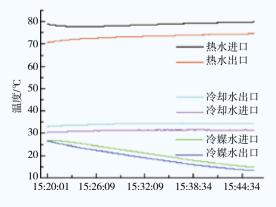




图4 启动阶段热水温度变化曲线(左)及功率变化曲线(右)



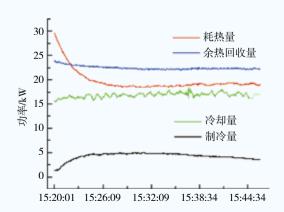
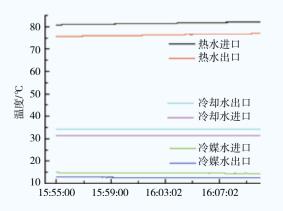



图5 预热阶段温度变化曲线(左)及功率变化曲线(右)

#### 5.3.3 溴冷机准平衡阶段


当溴冷机冷冻水入口温度降低到15℃后,调节 冷却水缓冲水箱中缓冲水的流量,利用温度较高的缓 冲水来中和冷冻水的冷量, 使冷冻水入口温度保持在 15℃。此时冷却水进、出口温度及冷冻水进、出口温度 均保持稳定,而热水侧温度继续缓慢上升,直到其进 口温度上升至溴冷机名义工况90℃,这一阶段称之为 "准平衡阶段"。各测点温度及功率变化曲线见图6。

可见在此阶段制冷量与冷却量与溴冷机名义工况 相差甚远,原因之一是热水侧温度水平偏低,之二是 冷却塔冷却能力不足, 因此使得热力系数较低, 制冷 量不到名义工况下的一半。

#### 5.3.4 水箱水量优化

要使溴冷机运行在名义工况下, 热水进口温度达 到90℃,需将水箱中热水的温度从75℃加热到85℃。 热水回路的净得热功率 $\Delta Q = Q_L - Q_L - Q_L = 1.38kW$ , 需要 约106min。而在此时间内, 溴冷机运行在部分负荷状 态,且负荷调节范围有限。为了使溴冷机尽快达到名 义工况,提高整个系统的一次能源利用率,可通过调 整水箱水量,并提高热水回路初始温度水平来减少溴 冷机达到热平衡的时间。

设水箱中水量为M kg, 初始温度t₀=20℃,余热回 收侧加热功率为 $Q_i = 23kW$ ,经过时间 $\tau_1$ 后,温度升至 t<sub>1</sub>。然后启动溴冷机,设启动阶段耗热量E<sub>6</sub>为溴化锂 溶液从20℃上升至80℃的吸收热量,  $E_i = 9.576kJ$ , 使 热水温度由tı降至t。之后取其在准平衡阶段的加热量  $\Delta$ Q=1.4kW, 经过时间  $\tau$ <sub>2</sub>后, 水箱温度上升至84℃, 取余热回收热水回路温升  $\Delta t = 6 \%$ , 此时余热回收系 统出口温度为90℃。整个过程可列出以下方程组:



$$\begin{cases} cM \ (\ t_1 - t_0 \ ) \ = Q_k g \, \tau_1 \\ cM \ (\ t_1 - t_2 \ ) \ = E_f \\ cM \ (\ 84 - t_2 \ ) \ = \Delta \ Q_k g \, \tau_2 \end{cases}$$

可得总时间 $\tau = \tau_1 + \tau_2 = 6.840 + 254.4 \text{m} - 2.804 \text{mt}_1(\text{s})$ 。

因t<sub>2</sub><84,则有t<sub>1</sub><89.7,故取200<M<400,80< t<sub>1</sub><89.7,利用Matlab得到时间τ与水量M和最终温度t<sub>1</sub> 的关系,如图7所示。最终温度越高,水箱水量越少 时,系统达到热平衡的总时间越少。当水箱水量为 200kg, 最终温度升高至90℃时, 从开机启动到溴冷 机达到热平衡共需约7 500s, 即2h左右。但应注意水 箱最终温度过高会增加余热回收系统沸腾的危险性, 同时水箱水量越少, 余热回收系统的稳定性也越差。

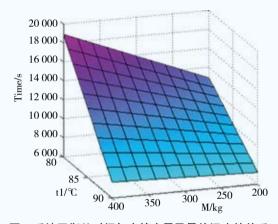



图7 系统平衡总时间与水箱水量及最终温度的关系

#### 5.4 发电特性分析

在发电机输出端连接数显电测表, 对发电电压和 频率进行测量,选取机组效率最高即9组负载时的数 据进行分析,其电压和频率的波动情况如图8所示。其 电压波动率在1%以内, 频率波动范围在±0.5Hz内, 符

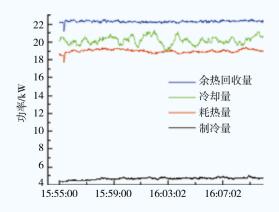



图6 准平衡阶段温度变化曲线(左)及功率变化曲线(右)

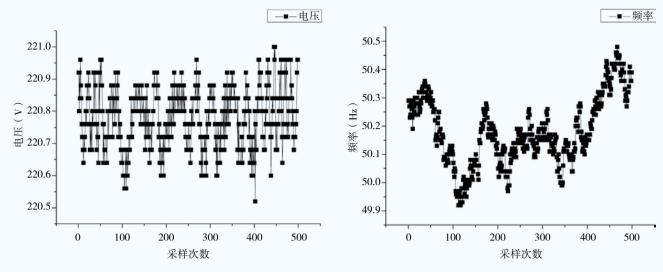



图8 稳态时电压波动情况(左)及稳态时频率波动情况

合国家电力信息网公布供电质量标准。

在本试验测试过程中,发电电压的波动都在允许 的偏差范围之内,但发电频率的波动较大、恢复时间 较长,发电频率的品质主要受内燃机转速稳定性的 影响。因此,提高发动机转速稳定性和负载改变时的 响应速度是提升发电品质的有效方法,增加步进电机 调节节气门开度的精度是提高发动机转速稳定性的主 要方法,提高发动机的响应速度则可以通过缩短负载 变化的感应时间、加快节气门调节速度或减少过调量 实现。

#### 结论

- (1)随着负载增加,发电效率增大,热回收率 相对减少, 而CCHP的总效率变化不大, 最大值可达 82%, 如果选用新型高效机组, 其综合效率将会有进 一步提升的空间。
- (2)根据溴冷机各测点温度的变化情况,将其 开机启动直至冷媒水出口温度达到名义工况之间的过 程分为3个阶段,依次为启动阶段、预热阶段和准平 衡阶段。
- (3)提高发动机转速稳定性和负载改变时发动 机的响应速度是提升发电品质的有效方法。
- (4)天然气用于CCHP是合理使用天然气的有效 方式,采用国产内燃机改装和配制相应设备进行小型 冷热电联产机组的开发具有可行性。

#### 参考文献

- 1 BP. 2011年BP世界能源统计年鉴[R]. 2011
- 2 田长栓, 马艳霞. 我国城市燃气的现状和发展趋势[C]. 中国土木工程学会燃气分会应用专业委员会2007年年 会论文集, 张家界: 中国土木工程学会, 2007: 9-10
- 3 同济大学. 燃气燃烧与应用[M]. 第四版, 北京: 中国建 筑工业出版社,2011
- 4 付林, 李辉. 天然气热电冷联供技术及应用[M]. 北京: 中国建筑工业出版社,2008
- 5 王振铭. 我国热电联产发展状况分析[J]. 热电技术, 2011; 2: 1-5
- 6 Kimber, Adele. Pushing the CHP cause[J]. European Chemical News, 1997; 68 (17): 612-620
- 7 Sharpe, Lorna. Swap Your Boiler for a power Station[J]. IEE Review, 2003; 49 (8): 458-464
- 8 高峰, 秦朝葵, 小型天然气发动机热电联产装置的开发 与可行性[J]. 柴油机, 2006; (1): 44-47

#### 欢诇使用 《城市燃



在 "燃气在线" (www.gas800.com)网站首 页,点击《城市燃气》 在线投稿图标即可。

专为作者设计的"稿件查询"系统,让作者可以 随时查询到所投稿件的审核状态。

投稿系统网址: www.gas800.com