doi:10.3969/j.issn.1671-5152.2014.12.003

鼠咬对聚乙烯燃气管道的破坏及其防治措施

四川亚大塑料制品有限公司(611830)陈晓林 豆利军 都江堰市集能燃气有限公司(611830) 戴质 倪健

摘 要: 聚乙烯燃气管道长期在地下运行,可能会遭到鼠咬破坏,造成安全隐患。本文通过对近年来西 南地区发生的鼠咬聚乙烯管道事件进行分析,找出了发生鼠咬聚乙烯燃气管道事件的原因,给 出相应的防治工程技术措施,并简要介绍了保护管道免受鼠类攻击的新方案,为防鼠咬聚乙烯 产品的开发提供了帮助。

关键词:聚乙烯燃气管道 鼠咬 防治 措施 新方案

Rat-bite Destruction and Prevention Measures of Polyethylene Gas Pipeline

Sichuan Chinaust Plastics Product Co., Ltd. Chen Xiaolin Dou Lijun Dujiangyan Ji Neng Gas Co.,Ltd. Dai Zhi Ni Jian

Abstract: Long-running polyethylene gas pipe under ground, may be subject to rat-bite damage, causing a safety hazard. Overall, the probability of polyethylene gas pipeline rat bite incidents is very low, and there are special reasons. Based on the rat-bite polyethylene pipe incident occurred in the southwestern region in recent years were analyzed to identify the occurrence of rat-bite polyethylene gas pipeline incidents reason, given the appropriate technical measures to control project, and a brief introduction to protect the pipeline from rat the new program

Keywords: Polyethylene gas pipeline Rat-bite Prevention measures New program

class attack for rodent polyethylene product development has helped.

前言

随着聚乙烯燃气管道在国内燃气输配系统中的大 规模应用,有效确保聚乙烯燃气管网的安全、防止管 道燃气泄漏至关重要。除材料质量问题、不规范施工 及野蛮施工会对聚乙烯燃气管网安全构成威胁外,聚 乙烯燃气管道长期在地下运行, 老鼠等啮齿类动物啃 咬也可能会对聚乙烯燃气管道造成破坏, 大大降低管 道使用寿命, 甚至会直接咬破管道, 造成燃气泄漏, 构成严重的安全隐患。

本文主要通过对近年来西南地区发生的鼠咬聚乙 烯燃气管道事件进行分析,找出发生鼠咬聚乙烯燃气 管道事件的原因,给出相应的防治工程技术措施,并 简要介绍保护管道免受鼠类攻击的新方案, 为防鼠咬 聚乙烯产品的开发提供了帮助。

鼠咬聚乙烯燃气管道事件基本情况

国内由于聚乙烯燃气管材的推广应用较晚,管 材质量不合格、施工不规范、野蛮施工等问题突出, 燃气行业大多将关注重点放在管材质量、规范施工方 面,所以鲜有老鼠咬管事件的报道。近年来,随着聚 乙烯燃气管道应用规模的扩大及行业规范度的提升, 鼠咬聚乙烯燃气管道事件才开始引起关注。

从2003年成立至今,四川某塑料制品有限公司共 收到鼠咬聚乙烯燃气管道事件反馈10起,包括发生于 2013年的1起垂直穿越下水道聚乙烯燃气管道遭鼠咬 燃气泄漏事件以及发生于2012年至2013年的9起灾后 重建项目聚乙烯燃气庭院管道漕鼠咬破坏泄漏事件, 被鼠咬破坏的均为PE80 SDR11 DN40规格聚乙烯燃气 管材。鼠咬后的部分聚乙烯燃气管材照片如图1、图2 所示。

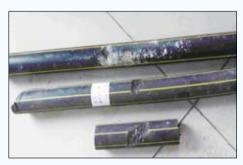


图1 遭部分啃咬管材

图2 遭咬穿管材

以上鼠咬事件均由于发现及时未造成安全事故, 但鼠咬聚乙烯燃气管材带来的管道寿命缩短及管道内 天然气的泄漏带来的安全威胁却长期存在,对事件进 行分析, 找出事件发生的原因及采取相应的防治措施 至关重要。

鼠咬聚乙烯燃气管道事件原因分析

3.1 垂直穿越管道遭鼠咬破坏事件原因分析

施工方按照GB50028-2006《城镇燃气设计规 范》的要求进行聚乙烯燃气管道穿越施工,穿越对 象为下水道,采用公称直径为159mm的钢管做穿越套 管。按照标准要求,套管两端应采用柔性的防腐、防 水材料密封。通过调查得知,施工方选用了合格的密 封材料,但管道两端未完全密封。

下水道、电线电缆沟、牲畜圈等为老鼠的理想 栖息地,下水道里一般都有老鼠存在。老鼠最终通过 套管一端讲入到套管内部,聚乙烯燃气管道及其套管 实际上成为了事实上的老鼠窝。鼠具有二上二下四个 齿形门齿, 无犬齿。齿髓腔不封闭, 故门齿能一直生 长。为抑制门齿生长, 鼠就要经常啃咬硬物, 以达到 磨牙的目的。

老鼠生活在由聚乙烯管道与钢管构成的老鼠窝 内。由于钢管硬度较高,老鼠无法通过啃咬钢管达到 磨牙的目地。聚乙烯管道硬度较低,成为了磨牙对 象, 最终聚乙烯燃气管道被咬穿或管道遭咬壁厚变薄 后在管道燃气内压的作用下,导致了泄漏。

通过对该事件进行分析,结果表明:施工时未充 分考虑防鼠咬问题,套管密封不严是垂直穿越管道遭 鼠啃咬破坏的主要原因。

3.2 低压庭院管道遭鼠咬破坏事件原因分析

此系列事件共发生9起,施工时间均集中在2012 年至2013年间,属于汶川5.12大地震之后的灾后重建 期。事件发生地点位于灾后安置点,周边普遍存在养鸡 场、污水沟、雨水沟等。通过对该系列事件进行调查分 析,发现导致鼠咬事件发生由以下几方面因素导致。

(1)设计原因

设计单位依据GB50028-2006《城镇燃气设计规 范》 6.3.4第3条埋设在庭院(指绿化地及载货汽车不 能进入之地)内,不得小于0.3m的最小覆土厚度的规 定进行施工图设计,最终确定最小覆土厚度0.4m,未 考虑其他规程要求。根据CJJ63-2008《聚乙烯燃气管 道工程技术规程》4.3.3条的规定: 埋设在机动车不可 能到达的地方时,最小覆土厚度不得小于0.5m。设计 院在设计时一般会参考此项规定,覆土厚度选择0.6m 或更大。

鼠善于打洞,打洞深度最多可达0.5m,一旦聚乙 烯燃气管道周围存在养鸡场、污水沟等老鼠的理想栖 息地时,老鼠会大量存在。庭院管道设计深度未超过 0.5m, 在老鼠纵向活动范围之内, 一旦洞穴穿过聚乙 烯管道,由于老鼠的啃咬天性,聚乙烯燃气管道的破 坏将难以避免。

由于其他类型聚乙烯燃气管道设计埋深均大于 0.6m, 在北方考虑到防冻需要, 管道埋深甚至超过 1m, 所以鲜有其他类型聚乙烯燃气管道(庭院管 外)遭鼠咬破坏的情形发生。

(2)施工原因

施工单位施工时未考虑老鼠可能对聚乙烯燃气管 道的破坏,抢进度、赶工期、施工不够规范是导致鼠 咬事件多发的一个重要原因。其中有6起鼠咬聚乙烯 燃气管道事件,燃气管道的埋深未达到设计要求,有 的覆土厚度未达到0.3m。另外,施工过程中还存在回 填土未夯实等问题, 为老鼠打洞提供了便利, 增大了 老鼠与聚乙烯燃气管道接触的机会。

(3) 其他原因

老鼠喜栖息于污水沟或雨水沟中, 其在松软的土 壤可打洞长达3m(水平方向)。其中有3起鼠咬聚乙 烯燃气管道事件,聚乙烯燃气管道水平方向均存在污 水沟或雨水沟,虽然埋深达到了0.6m,符合标准的要 求,但由于设计及施工时未考虑增加防鼠咬措施,老 鼠从水平方向打洞,最终咬破了管道。

通过对该系列事件进行分析,结果表明:设计及 施工环节未充分考虑防鼠咬措施是老鼠活动密集区庭 院管道遭鼠咬破坏的主要原因。

4 防治鼠咬工程技术措施

针对鼠咬聚乙烯燃气管道事件, 可采取以下工程 技术措施进行防治。

(1)垂直穿越管道施工时,特别是穿越下水道 等老鼠活动密集区域时,施工单位应严格按照规范施 工,套管应选择钢管等老鼠无法啃咬的材料,套管两 端应采用柔性的防腐、防水材料密封, 且须保证密封 到位。这样可以有效防止老鼠进入,保护聚乙烯管道

免遭鼠咬破坏。

- (2) 管线设计时, 应尽量避开埋设环境较差、 地面残留垃圾较多以及周边有鼠洞等老鼠活动密集区 域:无法避开时,应增加聚乙烯管道的设计填埋深 度,以避开老鼠的活动深度范围,0.8m的设计填埋深 度能够有效的避免鼠咬聚乙烯管道事件的发生。
- (3)管道施工时,应充分考虑鼠咬可能对聚乙 烯燃气管道的破坏,严格按照规范施工,保证管道填 埋深度; 因施工条件限制, 确实无法保证管道填埋深 度时, 应采取增加套管等其他防鼠咬措施。老鼠在土 质疏松的地方容易打洞,施工时,施工单位还应认真 做好回填土的夯实工作,增加老鼠打洞难度,保护管 道免遭鼠咬破坏。
- (4)在污水沟、雨水沟等老鼠活动密集区域附 近施工时,除保证管道埋深及填埋夯实工作外,还应 考虑其他防鼠咬措施。鼠一般不会在有石灰存在的地 方活动,在聚乙烯管道回填时,沿着管道加入一定的 石灰,对预防鼠咬能起到较好的作用。此方法对于其 他老鼠密集区域的聚乙烯燃气管道的施工同样有效。

保护管道免受鼠类攻击的新方案

开发新的防鼠咬聚乙烯双层管产品,采用内层聚 乙烯(PE)管道+外层聚丙烯(PP)的解决方案,并在 共挤的外层保护层中添加防鼠啮助剂,可有效规避鼠 咬造成聚乙烯燃气管材的破坏,减少对工程技术措施 的依赖, 更好的保护管道。

5.1 防鼠咬方案内容及原理

在标准结构的基础上增加PP保护层, PP保护层 厚度一般选择2-3mm,这样即可以达到保护管材的目 的,又能最大程度的减少防鼠啮助剂的添加量。产品 可以通过挤出机共挤的方式实现。整个管材仍全面符 合相关标准。

- (1) 防止老鼠咬啮的性能由外层PP保护层提 供,可以赋予外层不同的颜色。
- (2)作为燃气管道的承压等物理性能由内层PE提 供,即内层的PE仍按照标准选型(外径、壁厚等)。
- (3) 在实施管道焊接时,可将部分PP层剥离, 以满足焊接需要。显然,此种剥离不会对管材性能造 成任何不良影响。聚乙烯双层管外观见图3。

图3 聚乙烯双层管

5.2 防鼠啮助剂的选择与使用

- (1) 防鼠啮助剂是一种很"令人讨厌"的助剂。 其作用机理如下:
 - ◆味道, 在外层增加极其难闻的成分(很苦的成分);
- ◆痛苦,增加一种成分,能导致鼠类动物极其敏 感的粘膜感到特别痛苦(辣胡椒味的成分):
- ◆恐惧,诱发鼠类动物的嗅觉反应,该物质模拟 的是食肉动物的气味(合成老虎尿);
 - ◆成群结伴,动物会记得痛苦的经历。
- (2)该助剂对于人类和动物没有损害,不含有 有害物质,在挤出过程中没有有害的气味。活性添加 剂的稳定温度不低于300℃。
 - (3) 操作注意事项:
 - ◆包含了5%的活性添加剂 (很苦);
 - ◆操作颗粒料时建议戴手套;
 - ◆避免手和嘴的接触(苦味很持久);
 - ◆操作最终产品时不需要戴手套(含量为2%~3%)。 (4)添加剂是无毒的,对于环境而言是安全的。
 - ◆不溶于水:
 - ◆不会从聚合物基体里析出;
 - ◆土壤稳定性:
 - ◆惰性:
 - ◆长期保护:
 - ◆与其他助剂不发生反应。

5.3 防鼠咬产品的测试

助剂供应商对其防鼠咬产品进行的测试情况,详 见图4。

测试表明:通过在外层护套中添加防鼠剂方式能

够有效的避免鼠类的攻击,保护产品。此项测试虽然 是以电缆为对象进行,但测试结果对内层PE管道+外 层PP的聚乙烯双层管产品同样适用。

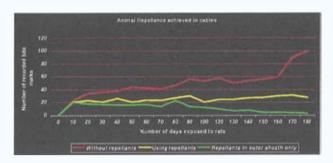


图4 防鼠剂在电缆应用中的测试

注: 纵坐标是被攻击的次数, 横坐标是暴露在鼠类动物中 的天数。不同颜色的曲线代表不同的添加量。

防鼠剂的有效添加量

红线: 无防鼠剂

黄色曲线:在电缆层的添加量2% 绿色曲线: 在外层护套的添加量2%

6 结论

聚乙烯燃气管道长期在地下运行,可能会遭到鼠 咬破坏,造成安全隐患。整体来看,鼠咬聚乙烯燃气 管道事件发生的机率很低,并有其特殊的原因。本文 通过对近年来西南地区发生的鼠咬聚乙烯燃气管道事 件进行分析,发现造成鼠咬事件的主要原因为:垂直 穿越管道未充分考虑防鼠咬问题, 套管密封不严: 老 鼠活动密集区,庭院管道设计及施工环节未充分考 虑防鼠咬措施。采取增加管道埋深、规范施工、特 殊区域增埋石灰等工程技术措施,可有效的防治鼠咬 破坏。

参考文献

- 1 马长城, 李长缨, 城镇燃气聚乙烯 (PE) 输配系统. 北 京: 中国建筑工业出版社, 2011
- 2 高立新, 李永威, CJJ 63-2008 聚乙烯燃气管道工程技 术规程. 北京: 中国建筑工业出版社, 2011
- 3 金石坚, 李颜强. GB50028-2006 城镇燃气设计规范. 北京:中国建筑工业出版社,2006