doi:10.3969/j.issn.1671-5152.2015.11.004

燃气安全放散阀检测装置的设计与应用

□ 北京市燃气集团有限责任公司(100035)关鸿鹏 张永昭 曹印锋

摍 要: 本文重点介绍了燃气安全放散阀检测装置的设计与应用。

关键词: 天然气 监测 放散阀

The Design and Application of Monitoring Equipment for Gas Relief Valve

Guan Hongpeng, Zhang Yongzhao, Cao Yinfeng

Abstract: The paper focuses on the design and application of monitoring equipment for gas relief valve.

Keywords: gas monitoring equipment gas relief valve

随着城市管网规模的不断扩大, 作为保证管网安 全运行手段之一的安全放散阀放散到大气中天然气量 已经达到一定的数量, 所以, 对安全放散阀放散状态 研究也就越来越迫切的提到议事日程,对于提高管网 安全、公众安全具有重要的意义。北京燃气集团针对 目前放散阀监控手段的空缺问题,组织专项课题组, 开展对于放散阀检测装置的设计与研制工作,目前该课 题样机已完成设计与制作工作,进入试运行阶段。

项目概述

1.1 燃气放散的现状

当前国内外燃气安全放散阀普遍缺乏放散状态 与放散量的实时监测手段,均是以保障燃气管网运行 安全为首要目的,并没有考虑燃气放散阀的放散状态 监测与放散量的计量。所以在实际运行过程中, 燃气 放散阀放散过程和燃气放散量完全不受监控, 如放散 阀发生故障,持续发生泄漏,这一方面会造成放散阀 周边空气燃气浓度超标,给周边环境带来安全隐患; 另一方面,也会造成燃气资源的浪费,不利于节能减 排,损害了燃气公司的经济效益。

正常的放散共分为两种情况,一种是生产作业 时的放散,包括燃气企业在管理过程中对新投入使用 的燃气管道进行置换造成的放散, 日常定期或不定期 维护、维修中的放散以及燃气管道对接时的放散。另 外一种情况为超压放散。超压放散是指通过安装在高 中压、中低压燃气管网的燃气安全放散阀监视整体设 备各级调压器的进口、出口压力, 当超压时可自动开 启,释放超压燃气,达到保护下游设备的作用,保证 用户的安全用气。包括调压前放散和调压后放散,调 压前放散是保护调压器和其他设备在来气出现高出设 定压力时放散用,这种结构一般用在大型门站上;区 域调压柜/站多采用调压后放散,主要用于调压器出 现微漏或出现严重的问题,例如皮膜破裂导致高压窜 到低压区时[1][2]。

1.2 燃气放散监测的目的与意义

截止2014年北京燃气集团共有次高压天然气调 压站110座,中压天然气调压站975座,次高压天然气 调压箱232座,中压天然气调压箱15 578座,燃气放 散阀估算为18 212个。燃气放散阀的微漏问题具有一 定的普遍性,大量的放散阀长期处在微漏情况下,泄 漏量的大小, 是否会对周边造成安全隐患等诸多问题 在没有有效监控计量手段的情况下都无从得知。另一 方面燃气放散阀工作状态也会随着使用年限的增加不 稳定性逐步显现,有必要对其进行实时监测来检验其 放散参数是否设置合理,是否按设定压力进行正常放 散,何时放散,以便提前发现问题并及时处置,保障 管网安全运行。同时也可以为实现集团的精细化管 理,降低购销差提供重要的参考数据。

燃气放散监控装置设计与原理 2

2.1 放散监控装置的选型

针对燃气放散管道的放散流量监测设备的选择, 考虑到放散阀的种类、管径、放散口形状、不同压力 级制下的放散瞬流跨度较大,各类的监测设备受到价 格、安装方式、量程限制等诸多问题影响。经过多次 调研、讨论决定,依据放散管道的流速大小,分别设 计两款不同的放散流量监测装置。

流速较小的放散管道采用简易涡流流量计的方 式进行放散流量监测,并根据放散管的现场情况,配 置可调节结构件,以适用于不同管径的放散管监测; 流速较大的放散管道采用毕托管式气体流量计进行监 测,其安装结构与量程上限值可以实现对放散状态监 测的量身定做,并通过远传信号可对燃气放散管道的 放散状态进行实时监测。

2.2 低流速放散监控装置的设计与原理

采用简易涡流流量计对放散管进行检测的优点 是:成本低廉,使用方便,改制简单,测量范围宽。 缺点是:由于测速传感器怕冲击,测量有惯性,不能 测瞬间超速流量,不官长时间持续监测。简易涡流流 量计分为数字显示器和测速传感器二部分,结构与安 装如图1所示。

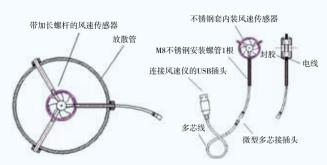


图1 采用简易涡流流量计的结构与安装

2.3 高流速放散监控的设计与原理

毕托管测速的优势是响应速度快,没有惯性和迟 滞,即使在恶劣环境中,性能稳定可靠,相比传统膜 式、热式测速传感器可获得更好的低压端重复性和更 快速精准微小流速测量和精度, 宽度程比, 通过内部 微控制器将检测数据进行全量程精准标定,线性补偿 和温度补偿均为数字化实现, 因此精度和分辨度高, 无零点漂移,长期稳定性好,维护成本低,其性价比 高,可耐瞬间的压力较大,也有利于解决放散管内气 体紊流问题对检测的影响, 因此适宜于高流速放散管 的检测,结构与安装见图2。

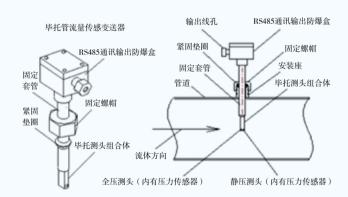


图2 采用毕托管式气体流量计的结构与安装

工作原理:

毕托管的原理构造如图3所示,是由两根空心细 管组成, 左细管为总压管, 右细管为静压管。测量流 速时使总压管下端出口方向正对流体流速方向,静压 管下端出口方向与流速垂直。

图4是常用的复合式毕托管,在两细管上端用橡 皮管分别与压差计图中的内灌水银(汞)的U形管上 部两根玻璃管相连接。

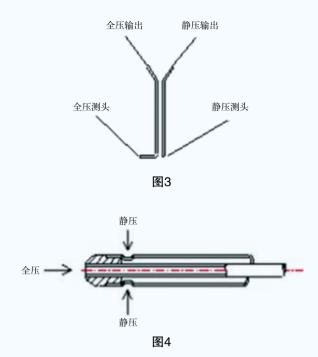


图5为用复合式毕托管测流速的示意图。在没有 流体流动时,因为毕托管没有感受到压差,所以U形 压差计左右的汞柱为一致高度; 当流体流动时使毕托 管的总压管的进口正对测点处的流速方向,而静压管 进口与流体擦肩而过, 因此全压获取的压力大于静压 而产生压差 Δh, 通过橡皮管传递导致压差计汞柱高 度出现全压段压下去,静压段上升。如果所测点的流 速较小, Δ h的值也较小; 所测点的流速较大时, Δ h 的值也就大了。

我们将该压差通过电子压力传感器进行压力与电 的变换, 获取压差的电信号, 就可实现压差信号的数 字化转换、远传显示和监测。

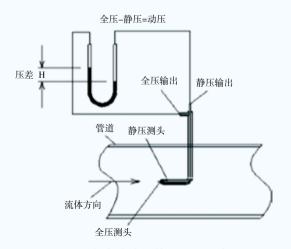


图5 复合式毕托管测流速示意

燃气放散监测装置的应用 3

3.1 消除安全隐患,降低巡检风险

依据北京燃气集团生产导则中规定针对次高压A 以上的安全放散阀每次巡站时都应对放散口进行燃气 浓度检测,用以检验放散阀的工作情况。但由于放散口 距地面有一定高度,特别是调压箱箱顶承重等问题,在 实际操作中有一定难度,且存在高空作业风险。同时在 目前缺少有效的放散实时检测手段情况下,对放散阀 是否正常工作,自动放散压力设定值是否合理,是否存 在泄露隐患,何时放散等工作情况和设备状态便无法 进行判断。燃气放散检测技术的应用可为我们提供可 靠的数据保障,可以监测放散阀的实时状态,对放散 监控数据进行分析,找出故障产生的原因。通过对故障 放散阀进行大数据采集,建立数学模型,实现针对放散 阀故障预警功能,从被动预防的变成主动排查。配合调 压线上装切断装置,还可实现故障调压管线的远程电 磁切断。有效降低管网安全隐患,避免不必要的放散浪 费,减少基层员工工作量,提高设备完好率,真正实现 精细化管理,为管网智能化建设提供又一可靠手段。

3.2 事故快速定位

北京燃气集团目前拥有15 000余座中、低压调压 箱,但其中具有监控远传设备的只有1000余座,对 于那些没上监控的中、低压站(箱),如出现区域性 多座调压站故障同时放散的情况,我们只有在接到周 边群众报修或者巡线发现报送至相关管理单位后,再 组织人员对该区域内的调压站进行逐一排查抢修,如 此势必会严重影响应急抢险作业的及时性。如借助放 散监测技术,我们可采用相对廉价的放散状态检测远 传装置将放散信息传至管理单位,结合局部区域内多 座调压站(箱)出口管线联通情况和超压放散情况, 依据放散调压站的放散量大小和放散时间顺序可在短 时间内大致判断事故调压站(箱),第一时间派遣抢 险人员有目的的到达事故现场,进行事故处理。

3.3 经济效益

伴随着北京燃气集团区域计量工程的实施,各分 公司间逐步开展了区域计量管理,量化供销指标。放 散是造成供销差的原因之一,目前没有放散量的准确 计量数字。同时针对放散量作业必要性与放散泄漏检 测的管理,是集团实现精细化管理重要的一部分。另 doi:10.3969/j.issn.1671-5152.2015.11.005

天然气锅炉效率与用气量关系探讨

□ 港华投资有限公司(518026)田春燕 邱建杭 伍字铿 蔡秋池

要: 燃气公司一直寻找优质的锅炉合作伙伴推荐给客户,实现多赢。选定合作厂商的最重要 摘 标准之一:锅炉设备的效率高。然而对于每个锅炉客户,因生产工艺不同,蒸汽利用情 况不同、导致回水的温度和流量不同、进而锅炉给水温度不同。所以、不同客户即使采 用相同效率的锅炉,每吨蒸汽需用天然气量也可能不相等。为了在向客户推荐锅炉时, 可以根据客户的工艺流程,快速给出客户具体的蒸汽吨耗数值,需要一个简易工具供市 场人员查阅使用。为此,本文通过理论分析,计算了锅炉在不同的给水温度、天然气热 值、锅炉效率、蒸汽压力下产生1t蒸汽需要的天然气量,并以此编制了一个excel计算模 板,并通过实际案例检验了该模板的正确性,为市场人员快速给出锅炉蒸汽吨耗给出实 际参考。

关键词:锅炉蒸汽吨耗效率 用气量

1 背景:锅炉厂家耗能数据的重要性

煤价持续下跌,天然气价格经过多次调整整体 逆势上涨,煤与天然气之间的价格差距进一步扩大, 使得将"煤改气"作为工作主题的燃气公司面临更大 的挑战。"使煤用户进行天然气改造后单位产品的燃 料成本增加值最少"这一话题,既符合客户的利益需 求,又能为燃气公司的可持续发展提供数据支撑。而 降低客户的燃料成本,在气价不变更的前提下,只能 通过降低用户的产品能耗来达到, 因此多地燃气公司 寻找并筛选一些高效能设备推荐给客户。

恰逢今年多地开展锅炉"煤改气"项目,许多锅 炉厂家会提到锅炉热效率问题,但由于客户的工艺需 求不同,蒸汽利用情况不同,所以无法只按照锅炉效

一方面, 燃气放散监控技术的普及还可为燃气行业申 请出售碳排放权提供有效的数据依据。通过碳排放权 交易市场出售降低燃气放散所产生的碳排放权进而获 利,目前价格约为40元/t, 许多电力企业每年可通过贩 卖其碳排放权获得上亿元的经济收益,但是燃气行业 在碳排放权上的应用还是空白。该技术的应用可为燃 气行业提供了新的盈利思路和手段。

参考文献

- 1 向素平等. 燃气调压后安全放散阀的选型[J]. 城市燃 气, 2012: 23-26
- 2 中华人民共和国建设部主编. 城镇燃气设计规 范.GB50028-1993.北京:中国计划出版社,1994